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A computer model is developed for simulating a bounded plasma slab. The two dimen- 
sional electrostatic model is periodic in one dimension and bounded in the other. In the 
non-periodic dimension, one can specify values of the potential or the normal electric 
field on both boundaries, or one can specify that a vacuum exists outside the plasma or any 
combination of these on each boundary. The plasma model can be non-neutral. Because 
the final solution has a particularly simple form, it can be obtained with only one Fast 
Fourier Transform, and therefore this model is only slightly slower than conventional 
doubly periodic models. External electrostatic sources, either on the boundaries or in the 
plasma interior, can be added in a natural way. The computer model is tested by examining 
the propagation of linear waves in a plasma slab bounded by vacuum. The predictions of a 
dispersion relation based on a warm fluid model are compared with the results obtained 
from the computer model, with very good agreement for the real parts of the frequencies. 

I. INTRODUCTION 

Until recently most electrostatic plasma simulation models with more than one 
spatial dimension have been doubly periodic. There are a number of reasons for this. 
From the point of view of investigating plasma theory, one is often interested in basic 
plasma phenomena without the additional difficulty of having boundary effects to 
consider. Periodic models satisfy this need because linear dispersion for such a model 
differs from that of an infinite plasma only by the discrete set of wavenumbers allowed 
in the former. Further, many nonlinear phenomena are not affected by periodicity, 
Finally, there exist efficient algorithms for solving Poisson’s equation [I, 21 which 
make use of the Fast Fourier Transform (FFT) [3J, and these are naturally suited 
for periodic systems. 

There are many problems in plasma physics, however, where boundary conditions 
are important. There are problems in plasma sheaths, plasma confinement, penetration 
of electric fields, and heating of plasmas by external sources to name just a few. 
Further, plasma simulation is most valuable when it can model real experiments, 
where boundary conditions are usually unavoidable. Finally, the ability to more 
accurately simulate fusion devices will eventually be a necessity. 

Although solutions to Poisson’s equation are known analytically for a variety of 
boundary value problems, these are not useful computationally in a major plasma 
simulation because a great deal of computing would be required at each time step. 
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There exists as yet no Fast Bessel Transform, for example, which is equivalent in 
speed to the FFT. The usual approach in such problems has been to solve a finite- 
difference form of Poisson’s equation at a fixed number of field points, such as the 
five-point difference equation in two dimensions, 

qx -7 6, y> - 2@(x, Y) i- @(x - 6, ,,) - - 8” + @(x, Y + 8) 2@k Y) + @(x9 Y 6) 
62 

-7 -477&i, y). 

This approximate equation can be solved exactly. Efficient algorithms exist [4] which 
solve Poisson’s equation in two dimensions when either the potential is specified or 
the normal derivative vanishes on the boundaries. With more complicated boundary 
conditions, solutions are more difficult to obtain because the resulting system of 
equations is in quindiagonal form [5], although clever algorithms have been devised 
for some cases [4, 61. A special case of interest in plasma simulation models occurs 
when the system is periodic in one direction. By performing a discrete Fourier analysis 
on the two-dimensional five-point difference equation, one obtains a three-point 
difference equation in one dimension for each Fourier mode [7]. Efficient algorithms 
for solving the resulting set of tridiagonal matrices for generalized boundary conditions 
exist [5] and for special cases the algorithms have been optimized [7, 81. 

We present here an alternative yet systematic approach to electrostatic boundary 
value problems which involves the use of Fourier series. The philosophy behind this 
approach is that we look for an approximate solution to a differential equation 
rather than an exact solution of a finite-difference equation. In this method, the 
contribution to the potential CD from the charges is first found for a doubly periodic 
system. This is the most timeconsuming part of the calculation and there already 
exist efficient algorithms for performing it [9]. One then adds appropriate solutions of 
Laplace’s equation, which can be found analytically, such that the sum of the two 
solutions satisfies the given boundary conditions. This approach can be applied to 
various geometries, but the case of a slab which is periodic in one dimension is parti- 
cularly simple. In that case, one can obtain an exact solution in terms of an infinite 
Fourier series. The approximation consists of truncating the infinite sum and only 
approximating the Fourier coefficients of the charge density. If 0 is evaluated only at 
fixed field points and interpolated in an appropriate fashion between them, one can 
use the FFT to perform the calculation. The result is that only a slight increase in 
computing time is necessary to simulate a bounded system compared to a doubly 
periodic system. Because the solutions are found in k space, many of the techniques 
which have been developed over the years for periodic systems can still be applied 
in this model. Finite-size particles are treated very simply by a convolution theorem. 
Additional smoothing, if desired, can be done in k space. Electrostatic antennas, or 
capacitor plates, can be added to the model in a natural way. Finally, existing doubly 
periodic codes which use Fourier series can be modified without major changes to 
include the effects of boundaries. 
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II. SOLUTION TO POISSON'S EQUATION FOR DOUBLY PERIODIC SYSTEMS 

Poisson’s equation in two dimensional rectangular co-ordinates has the form: 

av av 
-+- ax2 ay = -4rrp 

Taking the Fourier integral and integrating by parts gives: 

v2@e-%xe-%nu dx dy 
1 = - 1’ 1% + ik,@/ 11: emi’m’ dy 

LAW 0 
y=Ly 

ewikns dx - (kn2 $ k,,,2) Qp,,,, 
w=o 

= - 4 =pnm > 

where the Fourier coefficient in two dimensions is defined by 

fnm = -&-- 1 Ls 1 ‘f(x, y) eBiknzemikmw dx dy, 
xv0 0 

(2) 

(3) 

and k, = 2nrr/L,, k, = 2mn/L,. One can see that if @ and its normal derivative 
are periodic at the boundaries, then Poisson’s equation in Fourier space is: 

CL2 f km3 @,,m = 47~pn,,, . (5) 

From (5) it follows that one must have poo = 0 for a periodic system. That is, the 
overall system must be electrically neutral. The solution can be inverted immediately: 

(6) 

where the prime indicates that m = n = 0 is omitted from the sum. The arbitrary 
constant Cp,, has been set equal to zero. 

III. SOLUTION TO POISSON'S EQUATION FOR SLAB GEOMETRY 

If CD is not periodic, then (3) is an integro-differential equation for CD with unknown 
solution. There is a special case, however, that can be treated simply. If CD and its 
normal derivative are periodic in one direction, let us call that the y direction, then 
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the Fourier integral of Poisson’s equation in the y direction gives the following 
differential equation: 

d2@n(4 
___ - kna2@,(x) = -4~pm(x). dx2 

The solution of this equation can be constructed from any particular solution plus the 
solution of the homogeneous equation which is chosen to satisfy the appropriate 
boundary conditions. For m # 0, a particular solution has already been found, namely 
the periodic solution, and the solution to the homogeneous equation is a combination 
of positive and negative exponentials. Thus we have for m # 0, 

where 
Q,(x) = #&x) + A,,,ekm” + Bmewkmr, (8) 

is the periodic solution and A, , B, are constants chosen to satisfy the boundary 
conditions. For the case m = 0, we want to include the possibility that the system is 
not electrically neutral. In that case an appropriate solution is: 

where 

%(x> = $o(x> + 2voox(~, - 4 + Aox + 4, , (10) 

and the prime indicates that n = 0 is omitted from the sum. The general solution is 
then found by forming the Fourier series in the y direction: 

ayx, y) = f CD,(x) eikmW. 
m=--m 

The electric field in the x and y directions is found by straightforward differentiation: 

@w&4 Emx(x) = - T and E,y(x) = --ik,&(x). 

Boundary conditions can be expressed in the following generalized form: 

(14) 

(15) 
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where ar, , Pm, and ym are constants appropriate to the boundary conditions at 
x = 0, and x = L, . Substituting equation (8) into (14) and (15) yields the equations 
which determine the constants A,, Bm: 

+ p,(O) jv + k,J, - k,B,) = urn, 

CX,(L~){~,(L~) + AmekmL” + &CkmL”) 

+ ,~JL,) ] d4:F’ + k,A,ekmLz - k,nB,hkmLzl = y&L%). 

(16) 

(17) 

After solving for A, , B, one can express the solution (8) in the following form: 

Q,(x) = &n(x) + G,(O) xmLW + G&J xm”C4 W 

where we define the following constants: 

G,(O) = y,,z(O> - 40) Pm + hn(O) 17, (19) 

G,(L) = y,(L) - 4-b) Pm + rkn(Lz) urn (20) 

The quantitites xmL’(x) and xmR(x) depend only on the type of boundary conditions, 
and therefore can be calculated once at the beginning of the simulation and stored. The 
quantities G,(O) and G,(L,) must be updated each time, but their calculation involves 
only simple sums and products. 

For the case m = 0, we shall still express the boundary conditions in the form of 
equations (14) and (15). However, all the constants cannot be arbitrarily specified 
because Gauss’ Law must be satisfied in two dimensions, 

471 J, p dA = - $ ?.f!t dl. 
c an (26) 
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When the system is periodic in the y direction, this condition can be expressed: 

Thus the constants 01~ , &, , and y0 in (14) and (15) must be chosen to be consistent 
with the requirement: 

d%(L) d%(O) 
-z- 7 + 4Trp,,L, = 0 (28) 

Substituting equation (10) into (14) and (15) yields the equations which determine the 
constants A, , B,: 

(29) 

(30) 

After solving for A, , B, , equation (10) can be written in the form: 

@o(x) = Ito(x) + 2~podc(Lz - 4 + Go(O) xoL’(x) + Cd&.) xoR(x) - PO , (31) 

where we define the following constants: 

(34) 

If programming simplicity is more important than computational efficiency, these 
equations can be programmed as they stand. In the following subsections we examine 
some special cases, deriving the appropriate constants to properly formulate the 
boundary conditions and expressing the simplified form of the solution which may 
allow some optimization in storage and calculation. 
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1. Potential specified at x = 0, L, . 

This case is straightforward, with q,,(O) = or,(L,) = 1, &,(O) = &(L,) = 0, and 
where we define: 

ym(0) = +m(0) = -& j” @(O, y) emikmv dy, 

Y 0 

ym(Lz) = I#J,(L%) = -& 1” @(Lz , y) e-‘“m’ dy. 
Y 0 

(39) 

(40) 

The functions xm(x) have the simplifying feature that xmR(L, - x) = xmL(x). The 
solutions can be written in the form: 

@Ax) = ICldx) + {[&dL) - Pm1 sinW,x) 
+ 1$&O) - P,,] sinh[k,,(L, - x)]}/sinh(k,,,L,) 

@o(x) .-I #o(x) + 27voox(L - -9 + [+0(L) - PO1 (f-) t 
f [$0(O) - PO] (1 - 2). 

(41) 

(42) 

These solutions can be used to model the particularly interesting case of a plasma 
bounded by conducting walls by setting @ -= 0 at the boundaries. With conducting 
walls one could also expand the potential directly in terms of the eigenmodes sin 
(nvrx/L,). However, the expansion in terms of eigenmodes requires twice as many 
modes and therefore more calculation to achieve the same resolution as the method 
presented here. With the present method, the case when the plasma has driven 
antennas on the boundaries can also be modeled by specifying the potentials on the 
boundaries as functions of time. 

2. Normal electricjeld specified at x = 0, L, . 

In this case we have for m :,f: 0, a,(O) = cy,,,(Lz) = 0, pm(O) - &(L,) : - 1, and 
we define: 

(43) 

(44) 

The functions xm(x) have the property that x,,,~(L~ - x) 2 -xmL(x), and the solution 
can be written in the form: 

@m(x) = &,(x) - Gn(L) - flml ccW’w) 
- [c,(O) - L7,,J cosh[k,,,(L, - s)]?jk,, sinh(k,L,). (45) 
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For the case m = 0, boundary constants which are consistent with the restriction of 
Gauss’ Law are: a,,(O) = 1, ol&,) = 0, &,(O) = /3JLJ = - 1, and: 

Ylm = 4L~ - 4v,,L, + @I#9 (46) 

Y&L) = %G) (47) 

The solution is then determined to within the constant @o(O): 

@o(X) = $00(x> + %‘,,x(L, - x> - [%tL,) - fl,, - 27rpooLs]x + Q,,(O) - PO . (48) 

Since Gauss’ Law determines ~(0) once E,,&.) is specified, ~(0) does not enter in (48). 

3. Potential speciJied at x = 0, normal electricJield at x = L, . 

For this case one has h(O) = 1, ol,tL) = Pm(O) = 0, A,h%J = - 1, and .y,JO) = 
&(O), y,(L,) = ena( and the solution can be written in the form: 

@dx> = AA4 - k,dLl - GJ ~Wkd 
- Lbm?) - hnP?nl cosh[k,(L, - x)]}/km cosh(k,L,). 

For m = 0, one obtains equation (48). 

(49) 

4. Vacuum specljied at x = 0, L, . 

A situation of particular interest is an isolated plasma with vacuum on the outside. 
We thus consider here the problem of an isolated slab, which is periodic in the y 
direction, with no charge extending outside the interior region 0 < x < L, . The 
solution in the interior region is still given by (8) and (10). In the exterior regions, 
the appropriate differential equation is: 

d2@,“(x) 
dx2 

- km2Qnz”(x) = 0. 

The vacuum solutions must not grow exponentially away from the boundaries so that 
the appropriate solutions are: 

CD,“(x) = CD,(O) e”m” 

CD,“(x) = @,(L,) e’km’(k+) 

x < 0, (51) 

x > L,. (52) 

where we have already required that ~3, be continuous across the boundary. From 
Gauss’ Law one can show that the jump in the normal component of the electric 
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field is given by any external surface charge density on the boundary, dE, = 47ru,,t . 
If one defines 

u,(O) = -& lob u&O, y) e--ikmv dy, 

Us = -& 1’ u&L,, y) emikmv dy. 
v 0 

then one can show that the appropriate boundary conditions are: 

d@,(O) - 
dx + I km I @m(O) = 47vn(O), 

d@,(L) 
dx + I km I @m(L) = 477~(Lz), (56) 

so that after substituting the constants LX&O) = a&L,) = I k,,, I, pm(O) = -1, 
p&L@) = 1, and r,,(O) = 47~,(0), ym(Lz) = 477u,(L,), one obtains the vacuum 
solution: 

{II, - 1 k, 1 P, + 4~u,(Lz)} e-‘k’“‘(Lz-r) 

- & {II,,, + 1 k, I P, - 4~~(0)} e-‘rc,‘z (57) 
m 

Note that we have the simplification xwR(Lz - x) = x~“(x). The external surface 
charge at the boundaries oscillating at a prescribed frequency can serve as an external 
driver on the system. Since uezt is an arbitrary function of y, one can model a variety 
of external sources: grids, point sources, arrays of point sources, or capacitor plates of 
finite size. 

For the case m = 0, we require the vacuum solutions to have continuous potentials 
and for the normal electric fields to be equal and opposite at plus and minus infinity. 
Thus 

QoV(x) = Ax + Qo(0) x < 0, (58) 

@o”(x) = A&! - x) + @o(L& x 2 L, . (59) 

Requiring the jump in the normal electric field to equal the external surface charge 
density at the boundaries gives the conditions: 

- 9 + A = 477uo(0), 

A + d@,(L) ~ = 4Truo(L,). 
dx 
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The constant A can be determined from Gauss’ Law by adding these equations. Thus 
the appropriate boundary constants are a,,(O) = 0, 01,&) = &,(O) = /3,(&J = 1, and 

Y&O) = 2vooL + 279(L) - 273(O), (60) 

Yo&) = -2q%oL, -I- 27q(L,) - 2X0”(0) + @,(L,). (61) 

Substituting these into equation (31) leads to the solution: 

- h7&,) - 27qm + m(L! - 4 + @,(L) - PO . (62) 

The solution is then determined to within the constant @&,J. 
It should be pointed out that the field boundaries for the potential calculation 

(x = 0, L,.) need not coincide with the plasma boundaries so long as they are outside 
the plasma. This allows one to model a plasma that forms its own boundary in vacuum, 
by fixing the field boundaries sufficiently far from the plasma. Hackney’s technique 
[4] for solving the vacuum boundary value problem also uses Fourier series, but in 
this application his method requires twice as many Fourier modes than the method 
presented here. 

5. Vacuum specified at x = 0, potential at x = L, . 

The appropriate constants in this case are: (Y,(O) = I k, 1, (Y,JL=) = 1, &(O) = 
--I, &,(L,) = 0, and y,,,(O) : 47ro,(O), ym(Lz) = &(Lz), and the solution can be 
written in the form: 

Qm(x) = &(x) + [&,(LJ - P,] e-‘km’(L-2) 

1 k, 1 P,,, - 4~~0,(0)] ,z-“‘“‘~~ sinh[k,(L, - x)]. (63) 

For m = 0, equation (62) applies. 

6. Vacuum specified at x = 0, normal electric field at x -= L, . 

For this boundary condition, one has 01,(o) = ) k, I, +(L,) = 0, ,&(O) = 
pm(Lz) = -1, and y,,,(O) = 4 7ru,,,(O), ym(Lz) = B,(&). The solution then simplifies 
to: 

O,(x) = f/&(x) - & [c,(L,) - III,] e-‘““‘(Lz-2) 
m 

- & [Ii’, + I k, 1 P,, - 47ru,(O)] e-lkmlLz cosh[k,(l, - x)]. (64) 
m 

Form = 0, the correct solution is given by equation (48). This solution can be used if 
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TABLE I” 
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1. Potential specified at x = 0, x = .L, 

A z = -iA,,,u = -[k,,,&,,(LJ - k,,,P,,,] m 
B z = iB,,,q = [k,&,(O) - k,,,P,,,J 

f;(x) = g,“(x) = cosh(k,x)/sinh(k,,,l.J 

f~*(x) = g,“(x) = sinh(k,x)/sinh(k,,,lJ 

BCo = -h&) - MWL + 170 

2. Normal electric field specified at x = 0, x = L, 

AglZ = -iA,,,u = [E,(L,) - I$,,] 

B,” = iB,,,v = [E,,,(O) - II,,,] 

fmz(x) = g,,,=(x) = sinh(k,x)/sinh(k&) 

f,‘(x) = g,,,v(x) = cosh(k,x)/sinh(k,,,L,) 

BC,, = r,(L,) - 2~~03, . L, 

3. Potential specified at x = 0, 

normal electric field specified at x = L, 

A + = -iA,,,v = [q,,(L,) - If,,,] m 
B,” = iB,,,* = [k,,,&(O) - k,P,,,] 

f,“(x) = g,y(x) = cosh(k,x)/cosh(k,&) 

f,‘(x) = g,,,=(x) = sinh(k,,,)/cosh(k,,,l,) 

BC, = G,(L=) - 27rpi,, . L, 

o Boundary electric fields have the form 

E,%(x) = i’ - $47rp,, efnn5 - 4np,,, ($ - x) + BC,, - II,, , 
n--o3 ” 

E&x) = 0. 

The constants A,:, B,,,‘ and the functions&*(x), g,‘(x) for each component i, along with the constant 
BC’, , are summarized in this Table. 

Table continued 
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TABLE I-Continued 

4. Vacuum specified at x = 0, x = L, 

A,,,” = - y A,,,* = - #Il.,, - I k,,, I P,,, + 4aq,,(L,)] 
m 

B=’ i I km 
m k B,’ = -@L + I k, I Pm - 47mn(O)J 

m 

f,“(x) = gmz(.x) = f,“(x) = g,Y(x) = e-I*mI(L=-z) 

BC, = -2ao,(Lz) + 2ao,(O) 

5. Vacuum specified at x = 0, potential specified at x = L, 

B,” = iB,’ = -[I&, + I k, I P,,, - 4~q,,(O)] 

f,“(x) = f,“(x) = e- Ih I (L,-=) 

g,“(x) = e- IL, 1-L cosh(k,x) 

g,,,“(x) = e-l’%& sinh(k,x) 

BC, = -2noo(L,) + 27q(O) 

6. Vacuum specified at x = 0, 
normal electric field specified at x = L, 

A,,,* = - 9 A,,,” = [+,(LJ - II,,,] 
Tn 

B,” = iB,,,* = - , k,, .&I.- W’m + I km I Pn, - 4w,,(O)l 

f,“(x) = fmy(x) = e-lkml(Lz-z) 

g,“(x) = e-hlL= sinh(k,x) 

gmv(x) = e-lkmk cosh(k,x) 

BC, = s(L) - 27~00 * L 

symmetry about the center of a slab can be assumed in some problem. One need 
simulate only half the system by requiring em(&) = 0 and reflecting particles elastically 
from the boundary at x = L, . 

In our simulation the components of the acceleration are calculated directly, and 
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therefore it is useful to summarize the electric field components in Table I, where all 
the fields can be written in the form 

E,,(x) = f’ E,,eikns + BC,(x). (65) 
n=--03 

This method of solving Poisson’s equation for a bounded slab is equally applicable 
to magnetostatic codes where the vector Poisson’s equation must be solved. This has 
been done for an isolated slab by Lin and Dawson [lo]. Finally, this method can be 
extended to three dimensions for a system which is periodic in two dimensions and 
bounded in the third, or reduced to one dimension by using the solutions derived for 
in = 0. 

IV. APPLICATION TO FINITE-SIZE PARTICLES 

Each particle, with label j and charge qj , is advanced according to the force at 
position rj: 

F, = -qjV@(rj). (66) 

For finite-size particles, one must integrate over the charge distribution of the 
particle: 

F, = --c/j j- S(l f - ri I) V@(r) d3r, (67) 
21 

where S(l r 1) is the shape factor which gives the charge distribution of a particle 
whose center is at the origin. The differentiation is done analytically (see Table I). 
One advantage of using Fourier series is that integrals such as (67) can be done by a 
convolution theorem. In the periodic direction, the integral is immediate: 

F, = q,L, f 1” E,(x) S-,(x - xJ eikmyj dx, 633) m=-m 0 

where E,(x) is given by (65) and S,(x) is the Fourier transform coefficient in the 
y direction of S(x, v). Substituting (65) into (68) one can carry through part of the x 
integration by observing that 

I 
LZ 

S-,(x - xj) eiknx dx N eiknxR,,-,L, , (69) 
0 

where S,, is the double Fourier transform of S(x, v), if the particle is sufficiently far 
from the boundaries that its density is negligible there, The result is: 

+ qjLy f eikm'$ JLz BC,(x) S-,(x - xi) dx. (70) 
171=-m 0 

SSI/30/3-8 
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The remaining integral in (70) can be performed analytically or numerically and the 
results stored for fixed values of xi . In practice, however, this may not be necessary, 
since for many of the particle shapes in use it is a valid approximation that 

s 

=, 

BC,(x) S-,(X - xj> dx 1: BC,(xj) 
0 

(71) 

Furthermore, the finite-size particle is important for smoothing particle collisions 
and should not be important for the interaction of the particles with the smooth 
fields arising from the solution of Laplace’s equation. 

V. COMPUTATIONAL CONSIDERATIONS 

In evaluating the force, Fast Fourier Transforms are used; one, therefore, normalizes 
distances to the grid spacing, x” = xN,/L,, 9 E yN,/L,, where N, and N, are the number 
of grid points in the x” and 9 direction, respectively. The force is evaluated at integral 
values of x”, y, the grid points, and interpolated between the grid points to give the 
force at the position of the particles sj , jjj . The infinite Fourier sums are approximated 
by summing the index n from - NJ2 + 1 to NJ2 - 1 and the index m from - NJ2 + 
1 to NJ2 - 1. The sums can be put in the form required by the FFT by noting that 
exp[-2&zZ/NJ = exp[2ri(N, - n)a/NJ f or integer 5. One stores the coefficients 
with negative index n in the location labled with index N, - 1 > n’ > N,/2 + 1 
according to the rule n’ = N, + n and setting fN,,Z,m = 0. The index m is treated 
similarly. With these rules (70) can be written: 

(72) 

where K”, = k,L,/NG = 2n.rr/Nz, K”, = k,L,IN, = 2mrr/N,, Se,,-, = S,,, , and 
where we define: 

FB,(Z) = j Nx BC,(G’) S_,(%’ - 5) dx”‘. 
0 

(73) 

To evaluate (72) requires a two-dimensional FFT and a one-dimensional FFT for 
each value of x”. Because F&(X) is exponentially decreasing away from the boundaries, 
additional economies in the correction terms can be achieved: for increasing k, , 
increasingly more terms in the interior are negligible and can be set to zero. 

The force calculation can be optimized by combining the one- and two-dimensional 
FFT’s into a single two-dimensional FFT. To do this one expands (73) as a discrete 
transform in the x direction: 
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where f takes on integer values. When this transform is inverted one recovers (73) at 
integral x” except that FB,(N,) is undefined by this method; however, equation (69) 
already assumed there were no particles there. 

By substituting the expressions in Table I into (74), one can write the ith component 
of FB,, in the form: 

where the constants Ami, Bmi contain the specific information about the boundary 
conditions that needs to be updated every time step, and the functional forms f& , 
g& depend only on the type of boundary conditions and can be stored after their 
initial calculation. The total force can be written in the following form: 

Note that the single FFT is actually used in two distinct ways in (76). First it is used as 
a discrete transform to represent the boundary terms at integer points. Secondly, it is 
used as a convenient technique for performing a partial Fourier sum. When the force 
is expressed in the form of (76), we have found that simulating a typical bounded 
system takes about 10 % more computing time than a similar doubly periodic system. 

Some additional computational economy can be achieved for boundary conditions 
which are not of the mixed type (I, 2 and 4 in Table I), which have the property that 
xnaR(L, - x) = -&x,“(x). Observing the identity for&(x) real, 

it follows that one can then write (75) in the following general form: 

VI. SIMULATION OF WAVES IN A BOUNDED PLASMA 

The computer model described here has been programmed in FORTRAN on 
UCLA’s IBM 360/91 computer. An appropriate test of the model is to examine how 
successfully linear waves in a bounded plasma are simulated; in particular, we consider 
a plasma bounded on both sides by vacuum. An especially interesting type of linear 
wave that exists on a plasma-vacuum boundary is the surface wave, which was first 
observed experimentally in 1959 by Trivelpiece and Gould [I I]. Many other authors 
have since derived the dispersion relation for surface waves in various limits and 
geometries. Using the model of a warm electron fluid and cold ions, and applying the 
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method of Andersson and Weissglas [12], one can obtain the following dispersion 
relation in slab geometry [13]: 

l- & 
wk + di + tanh / k, / L, _ 

( 
i k, / C& rL, 

2 1 7(u2 - cog 
tanh c 1 2 

= 0, (79) 

for the anti-symmetric surface modes and 

l-- ($2 
wk + w’,i + coth 1 kg / L, 

i 
/ k, / w”,, 

2 T(oJ” - alEi) coth 

for the symmetric surface modes, where 

k, is the wave number in the periodic direction, L, is the width of the slab, OJ;, , QJ”,~ 
are the electron and ion plasma frequencies, ye is the adiabatic constant, and z&, z 
kTe/Me is the electron thermal velocity. For electron surface waves whose wavelength 
is small compared to the slab width, k,L, > 1, the two branches of the dispersion 
relation merge and the frequency (oJ”,~ < w”,,) is given by: 

OJ = y ((2 + yeky2%d1’2 + (YJ”~ I k,b, I>, (82) 

where hi, = v~,Jw~~~ . Ion surface waves also exist. For k,X,, Q 1, there is only a 
symmetric mode with frequency slightly below kvc, . As k,X,, increases an anti- 
symmetric ion surface wave also appears, and in the limit k,h,, > 1, the frequency 
of both modes approaches w,i/(2)1’2. 

In addition to surface waves, propagating waves can exist in the body of a finite 

FIG. 1. Autocorrelation function of potential for anti-symmetric surface wave. (m,/Mi = 0, 
L&D, = 32, k,L,/Zm = 2, 32 x 128 grid, 28 x 128 particles, particle size a, = a, = 1, XD, = 1). 
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plasma. These waves are related to the resonances observed in plasmas since the 
1930’s. The propagating waves satisfy the usual infinite plasma dispersion relations, 

w2 zzz ~$8 + w;i -I- y&z2 + kg”) &e (83) 

for electron plasma waves and 

(84) 

for ion acoustic waves, where cs2 = y,KTelMi is the ion acoustic speed and k, = 
(-~~)l/~ is determined by (79) and (80). In general, there is one solution with m/L, < 
k, < (n + 1) z-/L, for each integer II. 

This dispersion relation was compared with simulation results by calculating the 
autocorrelation function Ck(f) for the potential & of the computer plasma in thermal 
equilibrium, defined by 

C,(t) = -& 

N-t 

(85) 

Particles were reflected elastically at the boundaries, and the length of each run was 
600 WJ . Symmetric and anti-symmetric surface modes were observed by adding and 
subtracting potentials on opposite boundaries, respectively, and Fourier analyzing 
the result in the y direction. A typical autocorrelation function for an anti-symmetric 
surface mode is shown in Figure 1. The spectrum analysis for the same mode, shown 
in Figure 2, gives the frequency. Since the eigenfunctions for the body waves are not 
purely sinusoidal and since the wavelength in the non-periodic direction is not an 
integral multiple of the system width, the standard FFT technique to find a mode 
with a particular k, generally gives a mixture of different body waves. The resolution 
can be improved by taking advantage of the known symmetries or form of the eigen- 
functions [13]. The real parts of the frequencies for electron waves are compared with 
the predictions of fluid theory in Figure 3. The agreement is excellent. 

P(wl 

FIG. 2. Frequency analysis of autocorrelation function for anti-symmetric surface wave- 
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Using different mathematical techniques, the damping of the surface waves in the 
semi-infinite plasma limit has been calculated by Cheng and Harris [14] to be 

2 l/2 

w 
WPe 

(86) 

-Computer simulation 
-Fluid theory 

0.25 ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 

kyXDe 
0.4 

FIG. 3. Dispersion relation for electron waves calculated from fluid theory and simulation results. 
Curves S, , S, , correspond to symmetric and anti-symmetric surface waves, respectively, and PII 
PB , to the longest wavelength symmetric and anti-symmetric propagating waves, respectively. 
(me/M5 = 0, LJe, = 32, 32 x 128 grid, 28 x 128 particles, particle size a, = a, = 1, XD, = 1). 

- l Symetric mode 
A Anti-symefric mode 

FIG. 4. SurfaceIwave damping rate calculated from kinetic theory and simulation-results. 
(m,/Mi = 0,-L&, = 32, 64 x 128 grid, 60 x 128 particles, particle size a, = a, = 1, &I, = 2). 
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and by Guernsey [15] to be: 

I ys I = w,, x .a k,L, 

For the simulation parameters used, these expressions should be applicable for 
k,X,, 2 1. The simulation for surface wave damping, shown in Figure 4, indicate 
that the damping is proportional to k,h,, . Such a proportionality is expected if the 

0.25. , , , , , , , , I 

- l Simulation results 

KY= Y, 
- c:r=y, 

FIG. 5. Damping rate for longest wavelength symmetric electron plasma wave and simulation 
results. (m,lMi = 0, L&b, = 32, 32 x 128 grid, 28 x 128 particles, particle size a, = a, = 1, 
ADS = 1). 

0.25 I , I I I , I I I 
l Computer simulation _ 

-Fluid theory 

FIG. 6. Dispersion relation for ion waves calculated from fluid theory and simulation results. 
Curve S, corresponds to a symmetric surface wave, S, to an anti-symmetric wave which is propagating 
in the region shown, and P, , P, , to successively shorter wavelength symmetric and anti-symmetric 
propagating waves, respectively. (me/M4 = l/9, L,jX ~~ = 32, 32 x 128 grid, 2 x 28 x 128 particles, 
particle size a, = a, = 1, TJTI = 10, ADS = 1). 
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wave loses energy in reflecting from the warm plasma sheath at the boundary. This 
effect is like that of the well known anomalous skin effect in solid state [16] and arises 
because particles enter and leave the oscillating sheath layer at different phases of the 
oscillation, and on the average they gain energy. The results tend to favor the theory 
of Cheng and Harris. 

Cheng and Harris [14] also calculate an approximate expression for the damping 
of electron plasma (body) waves in a slab geometry. The Landau damping yB in a 
bounded plasma is increased from the usual infinite plasma damping yr. , again due 
to the production of an oscillating sheath layer as the wave reflects from the boundary. 
The simulation results, shown in Figure 5, for the longest wavelength mode show a 
damping which is larger than predicted. The collisional damping v, based on an 
infinite plasma of finite-size particles [17] improves the fit considerably, but is not 
large enough to account for this difference in the simulation results. This indicates 
either the theory is incorrect, that it does not accurately account for our model 
consisting of finite-size particles, or that collisional damping is enhanced in a bounded 
plasma, probably due to enhanced collision rates associated with the sheath regions. 

For ion waves the results are shown in Figure 6, and the real parts of the frequencies 
are in good agreement with the predictions of fluid theory for the lowest order modes. 
The run was not long enough to measure damping with any accuracy in this case. 

VII. REMARKS ON ENERGY CONSERVATION 

The bounded plasma model described here does not, in general, conserve energy as 
well as similar doubly periodic models. Energy growth is linear in time and depends 
on the type of boundary condition used. The worst case of the ones tested was found 
to be the vacuum boundary condition, where for the run of Figure 3, energy growth 
was 0.8 % for 600 co&. The best energy conservation occurred for zero potential 
at the boundaries (conducting walls). 

In addition, it was found that collisions between cold ions and hot electrons give 
rise to further energy growth. This effect is reduced by increasing the ion-electron 
mass ratio and decreased as the two species came closer to equilibrium. This effect 
also depends on the type of boundary condition used. In a series of test runs, it was 
found that the energy conservation with the vacuum boundary conditions was about 
3-5 times worse than for similar runs done with the standard doubly periodic codes. 
It was felt that the accuracy was sufficient for most investigations; however, the 
mechanism whereby the algorithm fails to conserve energy is one for further study. 

VIII. CONCLUSION 

In order to study problems in plasma physics where boundary conditions are 
important, a computer model to simulate a plasma slab is developed. The two-dimen- 
sional electrostatic particle model is periodic in one dimension and a variety of 
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boundary conditions can be handled in the other dimension. The boundary algorithm 
can be added, without major modifications, to existing doubly periodic models which 
solve Poisson’s equation with Fourier series, and the additional time required for 
the boundary calculation can be made small. The computer model is tested by 
examining the dispersion of linear waves in a plasma slab bounded by vacuum, and 
comparing the simulation results with the predictions of a warm fluid theory, both for 
electron and ion waves. The agreement is very good. The damping of surface waves 
agrees favorably with a kinetic theory, while the damping of body waves is somewhat 
larger than can be accounted for with present theories. 
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